Egor Kolesnikov Theoretical biophysicist

□ +19296572747 @ kolesnikoves@vt.edu • 717 Lee Street Apt. 5, Blacksburg, VA, 24060 🚨 h-index: 3 🖼 Google scholar

I have strong background in computational biophysics and physics. Experienced in molecular dynamics simulations of biomolecules. Six years of experience investigating ion-DNA and protein-DNA interactions at atomistic level. Developed models for atomistic and coarse-grained simulation of chromatin and its components. Took part in development of implicit solvation algorithms for atomistic modeling, implemented in AMBER program package. Worked part-time as a scientific journalist.

EDUCATION

2023-ongoing PhD student., Virginia Tech, Physics Department.

PhD student., Moscow Institute of Physics and Technology, DGAP. 2021-2023

2019-2021 Master of Science, Moscow Institute of Physics and Technology, DGAP.

2015 – 2019 Bachelor, Moscow Institute of Physics and Technology, DGAP

1 ■ VT PhD GPA: 3.67/4

PUBLICATIONS

2021 Kolesnikov, E. S., Gushchin, I. Y., Zhilyaev, P. A., Onufriev, A. V. Similarities and Differences between Na+ and K+ Distributions around DNA Obtained with Three Popular Water Models. Journal of Chemical Theory and Computation. https://doi.org/10.1021/acs.jctc.1c00332.

Kolesnikov, Y. S., Gushchin, I. Y., Zhilyaev, P. A., Onufriev, A. V. Why Na+ has higher propen-2023 sity than K⁺ to condense DNA in a crowded environment. The Journal of Chemical Physics https://doi.org/10.1101/2023.05.15.540899

Kolesnikov E. S., Xiong Y., Onufriev A. V. Implicit Solvent with Explicit Ions Generalized Born Mo-2024 del in Molecular Dynamics: Application to DNA. Journal of Chemical Theory and Computation https://doi.org/10.1021/acs.jctc.4c00833

WORK IN UNEVERSITIES

Sep 2023

Theoretical biophysicist, Laboratory for Theoretical and Computational Molecular Biophysics COMPUTER SCIENCE AND PHYSICS (VIRGINIA TECH, COMPUTER SCIENCE DEPARTMENT),

Ongoing

Study of DNA compaction mechanisms using MD simulations

PhD program:

- > Refinement of the ion parameters for implicit solvent/explicit ions simulations of the nucleosome
- > Developement of a protocol of nucleosome simulations for generation of a representative ensemble of hustone tails conformations
- > Finding the optimal solvent model for H4-tail simulations

AMBER | LAMMPS | Python | NumPy | Curves+ | PyMol | VMD | CHIMERA | LATEX | Academic writing

Jul 2019

Theoretical biophysicist, Laboratory of structural analysis and engineering of membrane SYSTEMS (MIPT),

Dec 2022

Study of DNA compaction mechanisms using MD simulations

Master program:

- > Simulation of DNA in the presence of sodium and potassium using different solvent models, analysis of trajectories. Finding optimal water model for DNA simulations.
- ➤ Explanation why Na⁺ has higher propensity than K⁺ to condense DNA in a crowded environment.
- > Finding optimal parameters for model of explicit ions in implicit water.

PhD program:

➤ Investigation of chromatin dynamics using coarse-grained MD simulations

Jan 2018

Molecular biologist, LABORATORY FOR STRUCTURAL BIOLOGY OF GPCRS,

Jun 2019

Examination of the biophysical properties of GPCR receptors embedded into lipid nanodiscs

> Synthesis of A2A protein and its examination in different types of nanodiscs.

Molecular biology PCR Protein expression Protein purification

Jan 2024

Teaching assistant, VIRGINIA TECH PHYSICS DEPARTMENT,

May 2025

> Teaching laboratory works

> Checking students' lab reports

Sep 2022 Dec 2022

Teaching assistant, Extramural Physical and Technical School (MIPT),

> Checking students' homework

E Skills

Programming language

Python

MD program packages

AMBER, LAMMPS

Frameworks, tools, libraries Linux, Conda, GitHub, VMD, CHIMERA, PyMol, ŁT-X, NumPy, SciPy, Matplotlib